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Abstract. Universal quantum integrals of motion are introduced, and their relation with the
universal quantum invariants is established. The invariants concerned are certain combinations
of the second- and higher-order moments (variances) of quantum-mechanical operators, which
are preserved in time independently of the concrete form of the coefficients of the Schrödinger
equation, provided the Hamiltonian is either a generic quadratic form of the coordinate and momenta
operators, or a linear combination of generators of some finite-dimensional algebra (in particular,
any semisimple Lie algebra). Using the phase space representation of quantum mechanics in terms
of the Wigner function, the relations between the quantum invariants and the classical universal
integral invariants by Poincaré and Cartan are elucidated. Examples of the ‘universal invariant
solutions’ of the Schrödinger equation, i.e. self-consistent eigenstates of the universal integrals of
motion, are given. Applications to the physics of optical and particle beams are discussed.

1. Introduction

The role of integrals of motion in physics can hardly be overestimated. They help to analyse
and classify the behaviour of various classical and quantum systems. In particular, knowledge
of integrals of motion simplifies significantly the process of solving dynamical equations
governing the system evolution. In the quantum case, this was shown distinctly by Lewis and
Riesenfeld [1], whose method was generalized and applied to different problems in numerous
publications. A quantum integral of motion is defined usually as an operator whose average
value 〈ψ(t)|Î (t)|ψ(t)〉 does not depend on time for any state |ψ(t)〉 obeying the Schrödinger
equation. Î (t) satisfies the equation ih̄∂Î /∂t = [

Ĥ , Î
]
, therefore its explicit form depends on

the form of the Hamilton operator Ĥ (which is supposed to be Hermitian).
For example, in the simplest cases of a quantum harmonic oscillator with a time-dependent

frequency ω(t) or a charged particle moving in a time-dependent homogeneous magnetic field,
one has linear integrals of motion of the form [2–4]

Â(t) = ε(t)p̂ − ε̇(t)x̂ (1.1)

where ε(t) is a solution to the classical equation ε̈ + ω2(t)ε = 0 (here h̄ = m = 1).
Depending on the choice of the concrete solution ε(t), eigenstates of the operator Â(t) may
be either generalized coherent states [2–5], or squeezed correlated states [5, 6], or propagators
in various representations [7, 8]. Quadratic integrals of motion such as Â2(t) have been used
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in introducing even and odd coherent states [9], which are so popular nowadays due to their
interpretation as examples of ‘Schrödinger cat states’. Using quadratic integrals of motion
such as

Â†(t)Â(t) = |ε|2p̂2 + |ε̇|2x̂2 − Re(ε̇ε∗)(p̂x̂ + x̂p̂) (1.2)

(known as the ‘Courant–Snyder invariant’ [10] in particle beam physics and as the ‘Lewis
invariant’ in quantum mechanics [11]), one can find time-dependent solutions to the
Schrödinger equation, which are generalizations of the Fock states [1–4, 12]. Such integrals of
motion are very useful for calculating the Berry phase [13–17]. They can also be generalized
to the relativistic case [18]. For a detailed review on the method of quantum integrals of motion
see, for example, [19].

All the operators discussed above (and their eigenstates) depend explicitly on functions
such as ε(t), i.e. after all, on the concrete form of the Hamiltonian (through the function ω(t),
for instance, in the examples considered). It is known, however, that in classical mechanics
there exist invariants of another type, which preserve their values in time simply due to the
Hamiltonian structure of the equations of motion, independently of the concrete form of the
Hamilton function. The most famous example is the preservation of the phase volume (the
Liouville theorem), while the general construction is known under the name of the universal
integral invariants by Poincaré–Cartan [20, 21]. These invariants are equal to the sums of the
oriented hypervolumes (areas) of the projections of the chosen region in the phase space to all
possible different subspaces (planes) generated by equal numbers of coordinate and momenta
axes, such as xipi , xipixjpj , etc. In quantum mechanics, there also exists a quantity which
does not depend on time for any (Hermitian) operator: it is the integral

∫
ψ∗(x)ψ(x) dx.

However, this conservation law seems trivial.
The quantum universal invariants, which are conserved in time independently of the

concrete form of coefficients of certain specific families of Hamiltonian operators, were
discovered at the beginning of the 1980s [22]. In particular, such invariants exist for quantum
systems described by Hamiltonians which are arbitrary inhomogeneous quadratic forms
with respect to the canonical coordinates and momenta. These systems are distinguished,
since their evolution is described in terms of linear symplectic transformations. Similar
transformations also describe the evolution of paraxial light (laser) beams passing through
linear optical systems, and the related universal invariants were studied in [23]. Although
some results of papers [22, 23] were reproduced and generalized in reviews [19, 24], they
still seem to be unknown to a wider audience. Therefore, the special cases of the invariants
found in [22, 23] were rediscovered several times, although not in the quantum case, but in
the theory of classical particle beams (with applications to accelerators) [25–27] and optical
beams [28–37].

In this study we introduce the concept of quantum universal integrals of motion, as
operators whose average values are universal invariants. The explicit forms of such operators
include the variances of the quantum system, but they do not depend on the concrete coefficients
of the Hamiltonian. Also, we introduce the self-consistent eigenstates of the universal integrals
of motion, which can be called ‘universal invariant solutions’. Besides, we provide new
compact expressions for the universal invariants, including the invariants dependent on the
higher-order statistical moments.

The plan of the paper is as follows. In section 2 we consider, following [22], the universal
invariants of quantum systems, whose Hamiltonians are arbitrary quadratic forms with respect
to the operators of the generalized coordinates and momenta. The relations between quantum
universal invariants and the classical universal integral invariants by Poincaré and Cartan are
elucidated, using the description of quantum systems in terms of the Wigner function, in
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section 3. The universal integrals of motion and ‘universal invariant solutions’ are studied in
section 4, where the universal invariants containing higher-order moments are also considered.
Section 5 is devoted to the general case where the Hamiltonians are linear with respect to
generators of some algebra. Possible generalizations and applications in other areas, such as
the theory of propagation of paraxial optical and particle beams, as well as some unsolved
problems, are pointed out in section 6.

2. Universal invariants for quadratic Hamiltonians

2.1. General considerations

Consider a quantum system described in terms of a set of N operators, Q̂1, Q̂2, . . . , Q̂N ,
obeying the bosonic commutation relations

Q̂αQ̂β − Q̂βQ̂α = �αβ = −�βα (2.1)

where �αβ is complex numbers forming the N × N antisymmetric matrix �. Let us assume
that the dynamics of the system is governed by some quadratic Hamiltonian,

Ĥ = 1
2

N∑
j,k=1

Bjk(t)Q̂j Q̂k +
N∑

j=1

Cj(t)Q̂j ≡ 1
2Q̂B(t)Q̂ + C(t)Q̂ (2.2)

where B = ‖Bjk‖ is a symmetric N × N matrix with c-number elements, Q̂ is the N -
dimensional vector, consisting of operators Q̂1, Q̂2, . . . , Q̂N , and C is an N -dimensional
c-number vector. In such a case, solutions to the Heisenberg equations of motion for the
operators Q̂α(t) are expressed linearly through the initial operators Q̂α(0)

Q̂α(t) =
∑
β

�αβ(t)Q̂α(0) + χα(t) (2.3)

where �αβ(t) and χα(t) are some c-number functions of time. An immediate consequence of
equation (2.3) is the relation

Qαβ(t) =
∑
µ,ν

�αµ(t)Qµν(0)�βν(t) (2.4)

where

Qαβ = 1
2 〈Q̂αQ̂β + Q̂βQ̂α〉 − 〈Q̂α〉〈Q̂β〉 (2.5)

is the second-order central moment (variance). We shall also use the equivalent notation for
the variances: Qαβ ≡ QαQβ and QαQα ≡ Q2

α (without the summation over indices). The
specific feature of quadratic systems is the independence of the dynamics of the variances
Qαβ from the dynamics of the first-order mean values 〈Q̂α〉 (i.e. from the functions Cα(t) and
χα(t)).

Introducing the N × N matrix �(t) = ‖�αβ(t)‖ one can easily verify that it satisfies the
linear equation

�̇ = − i

h̄
�B� (2.6)

which results in the equation (d/dt)(���̃) = 0, where �̃ denotes the transposed matrix.
Taking into account the initial condition �(0) = EN (where EN is the N × N unity matrix)
we arrive at the fundamental identity

�(t)��̃(t) ≡ � (2.7)



7724 V V Dodonov

which means that � is symplectic matrix. Another fundamental identity

det �(t) ≡ 1 (2.8)

is a consequence of the Liouville formula for the matrix determinant [38]

det �(t) = exp

[∫ t

0
Tr

(
�̇(τ )�−1(τ )

)
dτ

]
(2.9)

and the traceless property of the matrix �B: Tr(�B) = Tr(�̃B) = Tr(B̃�̃) = − Tr(�B) =
0. (If the matrix � is non-degenerate, then (2.8) is an obvious consequence of (2.7) and the
continuity of the matrix �(t) in time. However, there exist interesting examples [22, 24] of
the systems with the degenerate matrix �, for example, if the number N is odd.)

Comparing the matrix form of formula (2.4)

Q(t) ≡ ∥∥Qαβ(t)
∥∥ = �(t)Q(0)�̃(t) (2.10)

with (2.7) it is easy to verify the identity

D(γ ; t) = det
[
Q(t) − γ�

] =
N∑

m=0

Dmγ
m = D(γ ; 0) (2.11)

where γ is an arbitrary auxiliary parameter. Consequently, the coefficients Dm do not depend
on time. Moreover, they do not depend on the functions Bαβ(t) and Cα(t) which determine
the concrete form of the Hamiltonian. These coefficients depend only on the initial state of the
system and the elements of the commutator matrix �. For these reasons we have called the
conserved quantities Dm quantum universal invariants [22]. To find the number of independent
invariants we note that the function D(γ ) is even: det (Q − γ�) = det

(
Q̃ − γ �̃

) =
det (Q + γ�). Therefore, the number of different independent invariants equals [(N + 1)/2]
(since the coefficient DN does not depend on Qαβ at all). If the Hamiltonian does not contain
linear terms with respect to operators Q̂α , then, besides the invariants Dm, there also exists the
invariants D′

m, which can be obtained from Dm by means of the formal substitution 〈Q̂α〉 = 0
in the definition of the quantity Qαβ .

2.2. Examples

For the set of usual momenta and coordinate operators, Q̂ = (
p̂1, p̂2, . . . , p̂n, x̂1, x̂2, . . . , x̂n

)
,

the commutator matrix equals � = −ih̄�∗, where

�∗ =
∥∥∥∥∥ 0 En

−En 0

∥∥∥∥∥. (2.12)

We shall use the notation D(n)
j , j = 0, 1, . . . , n − 1, in order to emphasize the dependence

of the universal invariants on the number of degrees of freedom n. The simplest invariant is
D(n)

0 = det Q(t). In particular, in the case of one degree of freedom we have the universal
invariant

% ≡ D(1)
0 = pp · xx − (px)2 . (2.13)

In the special case of the oscillator with a time-dependent frequency, this invariant was
discovered in [39]. For n � 2 a relatively simple expression can be written for the invariant
D(n)

2n−2, which is a quadratic form with respect to the variances Qαβ :

D(n)
2n−2 =

n∑
i,j=1

(
pipj · xixj − pixj · xipj

)
. (2.14)
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This invariant was also found in [40] (for n = 1 and 3). In the case of two degrees of freedom
we have (writing x1 = x, x2 = y, p1 = px , p2 = py)

D
(2)
2 = p2

x x
2 + p2

y y
2 + 2xy pxpy − 2 xpy ypx − (

ypy

)2 − (xpx)
2 (2.15)

D
(2)
0 =

[
x2 y2 − (xy)2

] [
p2
x p

2
y − (

pxpy

)2
]

+ (xpx)
2 (

ypy

)2
+ (ypx)

2 (
xpy

)2

−y2 p2
x

(
xpy

)2 − x2 p2
y (ypx)

2 − y2 p2
y (xpx)

2 − x2 p2
x

(
ypy

)2

−2xpx ypy xpy ypx − 2xy pxpy

(
xpx ypy + xpy ypx

)
+2 xy

[
p2
x ypy xpy + p2

y xpx ypx

]
+ 2pxpy

[
y2 xpy xpx + x2 ypx ypy

]
.

(2.16)

Other invariants for n > 2 have too many terms to write here.
For the bosonic annihilation/creation operators, Q̂ = (

â1, . . . , ân, â
†
1, . . . , â

†
n

)
,
[
âi , âk

] =
0,

[
âi , â

†
k

] = δik , the commutator matrix is given by equation (2.12). In the one-dimensional
case the analogue of invariant (2.13) reads [22]

%̃ = σN (σN + 1) − |σa|2 = constant (2.17)

where σa = 〈
â2

〉 − 〈
â
〉2

and σN = 〈
â†â

〉 − ∣∣〈â〉∣∣2. The analogue of the invariant (2.14) is

D̃(n)
2n−2 =

n∑
i,j=1

(
aia

†
j · a†

i aj − ∣∣aiaj ∣∣2). (2.18)

Examples of other sets of operators, with the commutator matrix different from (2.12) (e.g.
kinetic momenta operators in the presence of a homogeneous magnetic field, when the number
N may be odd), were given in [22, 24].

3. Geometric interpretation and the relations with the Poincaré–Cartan invariants

Since quantum systems with quadratic Hamiltonians are, in a certain sense, the closest to
the classical ones [19, 41], it is natural to suppose that the quantum universal invariants are
connected somehow with the classical Poincaré–Cartan integral invariants. Such relations
do exist, and in the most distinct form they manifest themselves, if the quantum system is
described in terms of the Wigner function [42, 43]

W(x,p) =
∫

dv eipv/h̄〈x − v/2| ρ̂ |x + v/2 〉 (3.1)

(〈x|ρ̂|x′〉 is the matrix element of the statistical operator ρ̂ in the coordinate representation).
Consider the Gaussian Wigner function [24, 44, 45]

W(p,x) = h̄N (det Q)−1/2 exp
[− 1

2

(
q − 〈q〉)Q−1(q − 〈q〉)] (3.2)

where the vector q is defined as q = (p,x), and Q is the corresponding symmetric variance
matrix. In particular, in the one-dimensional case we have [6, 46]

W(x, p, t) = %−1/2h̄ exp

(
− 1

2%

[
σpp(t)x̃

2 + σxx(t)p̃
2 − 2σpx(t)x̃p̃

])
(3.3)
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with % given by equation (2.13), σab ≡ ab, a, b = x, p, and

x̃ = x − 〈
x̂(t)

〉
p̃ = p − 〈

p̂(t)
〉
. (3.4)

For quadratic Hamiltonians, any initial Gaussian state remains Gaussian for any t > 0;
although the average values and variances of coordinates and momenta change with the course
of time, the value of % is not changed. The lines of the fixed values of the quasiprobability
W = constant are the ellipses. Consider the ellipse corresponding to the value of the argument
of the exponential in (3.3) equal to −1. The semiaxes of this ellipse are given by (in the system
of units where x and p have the same dimensions)

a± =
√
T +

√
% ±

√
T −

√
% T = 1

2

(
σpp + σxx

)
.

The area of the ellipse equals πa+a− = 2π
√
%. Consequently, equation (2.13) means nothing

but the conservation of the phase volume (the phase area in the one-dimensional case) contained
inside the surface of the constant Wigner quasiprobability, and in this sense the conservation
of % it can be interpreted as the quantum analogue of the classical Liouville theorem. In the
multidimensional case we have the invariant D(n)

0 = det Q, which is proportional to the square
of the volume confined inside the surface of constant quasiprobability.

The conservation of the area of the ellipse in the phase space in the special case of the
Gaussian wavepackets of free particles was mentioned in [47] (without any relation to the
universal invariants). The fact that the ellipse of the constant quasiprobability, related to the
Gaussian state of the oscillator (with constant frequency), rotates in the phase space without
changing its shape, was noted as far back as in [48]. It is interesting to note that the universal
invariants by Poincaré were used by Robertson [49] to illustrate the geometrical meaning of
the generalized uncertainty relations, but he did not touch on the dynamical aspect of the
problem.

The relations between the other invariants D(n)
2j and the Poincaré–Cartan invariants are

more involved. To elucidate them, it is sufficient to consider the Gaussian Wigner function
with the diagonal variance matrix Q. Let us introduce the notation %i = p2

i · x2
i . The

invariants D(n)
2j are equal in the case involved to the sums of all possible products of (n − j)

different factors %i . Let us designate the Poincaré–Cartan invariants (for the chosen region
confined with a surface of a constant value of the Wigner function) as P (n)

m , m = 1, 2, . . . , n,
the number 2m being equal to the dimensionality of the subspace which the chosen region
in the phase space is projected to. In the case discussed, all the projections are ellipsoids
whose semiaxes are proportional to the square roots of the variances p2

i and x2
i . Therefore, the

quantities P (n)
m are proportional to the sums of all possible products of m different factors√

%i . Taking into account the structure of the functions D(n)
2j and P (n)

m one can find the
relation [22]

D(n)
2j =

min(j,n−j)∑
k=0

αkP (n)
n−j+kP (n)

n−j−k (3.5)

where αk are some constant coefficients, and P (n)
0 ≡ 1.

It is known that the evolution of the Wigner function in the case of a quadratic Hamiltonian
(2.2) is described by the first-order partial differential equation [19, 24]

∂W

∂t
=

2n∑
k=1

∂

∂qk

[
(�∗Bq + �∗C)k W

]
(3.6)
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where q = (p,x), and the matrix �∗ is given by (2.12). Since (3.6) is nothing but the Liouville
equation of the classical mechanics for the probability distribution, the Liouville theorem
holds, in spite of the fact that the quasiprobability distribution W(x, p) is not necessarily
positive. Therefore, the volume of a region in the phase space confined with the surface
W = constant remains constant in time for any (not only Gaussian) initial Wigner function.
This is a simple consequence of the fact that the propagator of the first-order partial differential
equation (3.6) is the delta function [50], G(q, q′; t) = δ

[
q − �(t)q′ − χ(t)

]
, so the Jacobian

of the transformation q′ → q is equal to det � = 1. Therefore, if the initial Wigner function
was W0(q), then W(q, t) = W0

(
�−1(t) [q − χ(t)]

)
.

Not only the phase volume, but all other classical Poincaré–Cartan invariants are
conserved for an arbitrary quantum initial state, if one applies these invariants to any
region in the phase space confined with the surface W = constant. This remarkable
property is the direct consequence of the ‘classical’ evolution (3.6) for quantum systems
with quadratic Hamiltonians. Moreover, this example shows the distinguished role of
the Wigner function, compared with other ‘quasiprobabilities’ [43]. The evolution of
all other quasiprobabilities (Husimi’s, Cahill–Glauber’s, etc) is governed by equations of
the Fokker–Planck type, which contain the second-order spatial derivatives, giving an
effective ‘diffusion’ in the phase space. Therefore, the Liouville theorem does not work
for non-Wigner quantum distributions, as well as for quantum systems with non-quadratic
Hamiltonians, since in these cases the evolution equations are no longer the classical Liouville
equation.

4. Universal integrals of motion and universal invariant solutions

4.1. Universal integrals of motion and ‘trace’ invariants

In the Heisenberg picture, the vector R̂ = Q̂ − 〈Q̂〉 evolves as R̂(t) = �(t)R̂(0).
Consequently, the operator Î(t) = �−1(t)R̂ is the integral of motion in the Schrödinger
picture, i.e. its average value 〈ψ(t)|Î(t)|ψ(t)〉 does not depend on time for any state |ψ(t)〉
satisfying the Schrödinger equation (or a density matrix ρ̂(t) in the case of mixed states).
The vector operator Î(t) is linear with respect to the operators R̂α . Obviously, any quadratic
integral of motion can be represented as

Ĵ = ÎAÎ = R̂�̃−1(t)A�−1(t)R̂ = R̂�̃−1�(t)�̃A��̃(t)�−1R̂ (4.1)

where A may be an arbitrary symmetric constant matrix. The last equality in (4.1) is due to
the consequences of the symplecticity condition (2.7)

�−1 = ��̃�−1 �̃�−1� = �−1. (4.2)

The explicit form of the operator Ĵ depends on the matrix �(t), i.e. on the concrete form of
the quadratic Hamiltonian. However, comparing the last expression in (4.1) with the variance
matrix transformation law (2.10), one recognizes immediately that matrices �(t) and �̃(t) can
be removed if one identifies the matrix �̃A� with Q(0). Moreover, taking into account the
consequence of equation (2.10)

Q(t)
[
�−1Q(t)

]m = �(t)Q(0)
[
�−1Q(0)

]m
�̃(t) (4.3)

one may identify the matrix �̃A� with Q(0)
[
�−1Q(0)

]2m
(the exponent 2m must be an even

number, because the matrix Q
[
�−1Q

]2m+1
is antisymmetrical, for a symmetrical matrix Q
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and an antisymmetrical matrix �). Thus we obtain the family of integrals of motion

K̂2m(t) = −R̂
[
�−1Q(t)

]1+2m
�−1R̂ (4.4)

whose coefficients are expressed through some integrals of the wavefunction ψ(x, t) (or
the density matrix), but they do not depend on the concrete coefficients of the quadratic
Hamiltonian. It seems reasonable to call operators like (4.4) universal integrals of motion.
One can easily verify that all operators (4.4) commute between themselves:

[
K̂2m, K̂2n

] ≡ 0
for any integers n and m. Note that integer m may be not only positive, but negative, as well,
because the variance matrix Q cannot be singular, due to the generalized uncertainty relations
[19, 22]. Introducing the notation F̂2m = −K̂−2−2m, we obtain an equivalent set of commuting
integrals of motion

F̂2m(t) = R̂
[
Q−1(t)�

]1+2m
�−1R̂ F̂0(t) = R̂Q−1(t)R̂. (4.5)

The mean value of F̂0(t) is trivial: 〈F̂0(t)〉 ≡ 2n, where 2n is the dimensionality of the vector
R. However, for the mean value of the operator K̂0(t) we have

〈K̂0(t)〉 = −
∑
αβµν

Qαβ

(
�−1

)
βν

Qνµ

(
�−1

)
µα

= − Tr
(
Q�−1Q�−1

)
. (4.6)

Evidently, this is the universal invariant, since its value is conserved in time for any quadratic
Hamiltonian, being independent of the explicit form of the Hamiltonian (although it depends
on the initial quantum state). One can check that the right-hand side of (4.6) is proportional to
the universal invariant D(n)

2n−2 (2.14). Moreover, calculating mean values of operators K̂2m(t)

or F̂2m(t), we arrive at the set of ‘trace’ universal invariants

L2m = Tr
( [

Q�−1
]2m ) ∼ 〈K̂2m−2(t)〉 ∼ 〈F̂−2m(t)〉 (4.7)

which have been found for the first time (using another approach) in [22] and later rediscovered
in [25, 26] (for the classical particle beams) and in [32, 33] (for the optical beams). The
invariants in the form of the eigenvalues of matrix Q�−1 were considered in [26, 28]. The
‘trace’ invariants of odd order L2m+1 equal zero identically, for any symmetrical matrix Q

and antisymmetrical matrix �. Each invariant L2m is some function of the invariants D2n−2j ,
1 � j � m. The invariants L2m with m > n (where 2n× 2n is the dimension of the matrices)
can be expressed in terms of the invariants with indices m � n, due to the Hamilton–Cayley
theorem [38]. The same is true for the universal integrals of motion. Therefore, the independent
‘trace’ invariants are given by formula (4.7) with indices m � n.

4.2. Universal invariant solutions

Let us consider the special case Q̂ = (
p̂1, p̂2, . . . , p̂n, x̂1, x̂2, . . . , x̂n

)
. It is convenient to

renormalize integrals of motion and invariants using the matrix �∗ (2.12) instead of the
commutator matrix � defined in (2.1). Then we have a family of universal integrals of motion

K̂
(∗)
2m,n(t) = (−1)mR̂�̃−1

∗
[
Q(t)�−1

∗
]1+2m

R̂ (4.8)

where the second suffix n shows the number of degrees of freedom, while the coefficient (−1)m

is introduced to ensure positiveness of average values (see below). In the one-dimensional case
(n = 1) we have the following explicit expression for m = 0:

K̂
(∗)
0,1(t) = σpp(t)

(
x̂ − 〈

x̂(t)
〉)2

+ σxx(t)
(
p̂ − 〈

p̂(t)
〉)2

−σpx(t)
[(
x̂ − 〈

x̂(t)
〉) (

p̂ − 〈
p̂(t)

〉)
+
(
p̂ − 〈

p̂(t)
〉) (

x̂ − 〈
x̂(t)

〉)]
. (4.9)
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This integral of motion was found in [39] in the special case of an oscillator with time-
dependent frequency. For multidimensional systems, the integral of motion (4.4) with m = 0
was constructed in [22] and later in [51] (see also [36] for optical beams).

Another simple example is F̂
(∗)
0,1 (t) = K̂

(∗)
0,1(t)/%, where % is the universal invariant

(2.13). This is exactly the same expression, which stands in the argument of the Gaussian
Wigner function (3.3) (if one removes the operator symbols). Such a coincidence is not
accidental, because the Wigner function, being a solution of the first-order partial differential
equation (3.6), must depend on the integrals of motion, and not on the coordinates and time
separately. All other universal integrals of motion are also proportional to K̂

(∗)
0,1 in the one-mode

case: K̂(∗)
2m,1 = %mK̂

(∗)
0,1. Evidently, 〈K̂(∗)

0,1〉 = 2%.
It is well known (see, e.g., [19]) that any positively definite quadratic one-mode

Hamiltonian

Ĥ = µp̂2 + νx̂2 + ρ
(
x̂p̂ + p̂x̂

)
(4.10)

can be reduced by means of a canonical transformation to the harmonic oscillator Hamiltonian
with the effective frequency ω =

√
µν − ρ2. Consequently, its spectrum has the form

h̄ω(1 + 2s), s = 0, 1, 2, . . . , and eigenfunctions in the coordinate representation are given
by

ϕs(x) = (
2ss!

)−1/2
(

ω

µπh̄

)1/4

exp

(
−ω + iρ

2h̄µ
x2

)
Hs

(
x

√
ω

h̄µ

)
(4.11)

where Hs(z) is the Hermite polynomial. The operator K̂(∗)
0,1 (4.9) is positively definite due to

the generalized (Schrödinger–Robertson) uncertainty relation [6, 19, 52, 53]

% � h̄2/4. (4.12)

Therefore, the spectrum of K̂
(∗)
0,1 has the form κ(0,1)

s = h̄
√
%(1 + 2s) (independently of the

first-order mean values 〈p̂〉 and 〈x̂〉). In general, eigenstates |ϕs〉 of the operator K̂(∗)
(0,1) have

nothing in common with the time-dependent solution of the Schrödinger equation |ψ(t)〉 which
determines the variances σpp(t), σxx(t) and σpx(t) in the right-hand side of equation (4.9).
However, there are exceptional cases when the states |ψ(t)〉 and |ϕs〉 coincide (up to some
phase factor, which can depend on time, generally speaking). This happens if the eigenvalue
κ(0,1)
s is equal to the mean value of the operator K̂(∗)

0,1 in the state |ψ(t)〉, i.e. h̄
√
%(1+2s) = 2%.

In this way, we find a set of discrete distinguished values of the universal invariant %

(cf [54])

%s = [
h̄
(
s + 1

2

)]2
s = 0, 1, 2, . . . . (4.13)

It seems natural to call the related eigenstates |ψs(t)〉 ‘universal invariant solutions’ of the
Schrödinger equation. The eigenfunction of the operator K̂(∗)

0,1 in the coordinate representation
can be easily derived from equation (4.11), if one replaces the coefficients µ, ν, ρ by the
variances in accordance with equation (4.9):

ψs(x, t) = (
2ss!

)−1/2

(
s + 1

2

πσxx

)1/4

Hs

x̃

√
s + 1

2

σxx


× exp

[
− (

s + 1
2 − iσxp/h̄

) x̃2

2σxx

+
i

h̄
〈p̂〉x̃ + i;(t)

]
. (4.14)
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This wavefunction has a non-invariant time-dependent phase factor exp [i;(t)] (which
depends on the concrete coefficients of the quadratic Hamiltonian) in order to satisfy the
Schrödinger equation.

A more symmetrical and completely invariant solution can be written in the Wigner
representation. Using the Groenewold [55] formula for the Wigner function of the harmonic
oscillator energy eigenstate, or its generalization for eigenstates of quadratic integrals of motion
[24, 56, 57], one obtains

Ws(x, p, t) = 2(−1)se−ysLs(2ys) (4.15)

where Ls(z) is the Laguerre polynomial and

ys(x, p, t) = [
h̄2

(
s + 1

2

)]−1 [
σpp(t)x̃

2 + σxx(t)p̃
2 − 2σpx(t)x̃p̃

]
(4.16)

(the symbols x̃ and p̃ were defined in equation (3.4)). Since ys(x, p, t) is a classical integral
of motion, it is obvious that the function (4.15) satisfies the Liouville equation (3.6). Note that
the first factor in the right-hand side of (4.16) equals

(
h̄
√
%s

)−1
. For s = 0 the function (4.15)

coincides with the special case of the function (3.3) corresponding to % = %0 = h̄2/4. This
is the only possible value of the invariant %, when the Gaussian exponential (3.3) describes a
pure quantum state [24].

The physical meaning of the solutions (4.14) and (4.15) is as follows. If one constructs
the initial wavefunction ψs(x, 0) or the Wigner function Ws(x, p, 0) in accordance with
(4.14) or (4.15), taking any values σpp(0), σxx(0) and σpx(0), obeying the constraint
σpp(0)σxx(0) − σ 2

px(0) = %s , and quite arbitrary values 〈x̂(0)〉 and 〈p̂(0)〉, then the form
of these functions will not be changed in the process of evolution, being given by the same
expressions (4.14) or (4.15), but with the values of variances and the first-order moments
related to the current instant of time t .

In the n-mode case, the universal invariant solutions are common eigenstates of n

independent commuting quadratic operators K̂0, K̂2, . . . , K̂2(n−1). Here we give one family of
such solutions, generalizing the set (4.15). Let us try to find an eigenstate of the operator R̂UR̂

in the Wigner–Weyl representation in the form W(r) = exp (−y/2) f (y), where y = rGr,
U,G are symmetrical matrices, r = q − 〈Q̂〉, and f (y) is some function to be found. In the
Wigner–Weyl representation the operator Q̂ has the realization [24] Q̂ = q−(ih̄/2)�∗(∂/∂q).
Therefore,

R̂UR̂W(r) = exp(−y/2)
{
f (y)

[
rUr + (h̄2/4)rG�∗U�∗Gr − (h̄2/4)Tr (�∗U�∗G)

]
+h̄2rG�∗U�∗Grf ′′(y) + f ′(y)

[
(h̄2/2)Tr (�∗U�∗G) − h̄2rG�∗U�∗Gr

]}
(4.17)

where f ′(y) denotes the derivative of the function f (y) with respect to its argument. Taking
U = �̃−1

∗ Q�−1
∗ and G = γQ−1 (where γ is a constant number to be determined) one has

�∗U�∗G = −γE2n. Then equation (4.17) assumes the form

K̂
(∗)
0,nW(r) = exp(−y/2)

{
f (y)

[
r�̃−1

∗ Q�−1
∗ r − (h̄2γ /4)y + (nh̄2γ /2)

]
−h̄2γ

[
yf ′′(y) + (n − y)f ′(y)

]}
. (4.18)

Remembering the equation for the associated Laguerre polynomials F(z) = L(α)
s (z)

zF ′′(z) + (α + 1 − z)F ′ + sF = 0 (4.19)
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one can exclude the terms with derivatives from the right-hand side of (4.18) taking f (y) =
L(n−1)

s (y). Then equation (4.18) becomes

K̂
(∗)
0,nW(r) = W(r)

{
h̄2γ (s + n/2) + r

[
�̃−1

∗ Q�−1
∗ − (h̄2γ 2/4)Q−1

]
r
}
.

The coordinate-dependent term in the right-hand side disappears for any matrix Q satisfying
the condition (E2n is the 2n × 2n unit matrix)

�̃−1
∗ Q�−1

∗ Q = h̄2

4
γ 2E2n. (4.20)

To find the coefficient γ we demand that the eigenvalue h̄2γ (s + n/2) coincide with the mean
value of the operator K̂(∗)

0,n in the state W(r) involved. Due to (4.20),

〈K̂(∗)
0,n〉 = Tr

(
�̃−1

∗ Q�−1
∗ Q

) = 1
2 h̄

2γ 2n.

Thus we arrive at the discrete set of coefficients

γs,n = 1 + 2s/n (4.21)

which yields the set of universal invariant solutions in the Wigner representation in the form
(we omit the normalization factor)

Ws,n(r) = exp

[
−
(

1

2
+

s

n

)
rQ−1r

]
L(n−1)

s

(
(1 + 2s/n)rQ−1r

)
. (4.22)

These solutions are eigenstates of the operator K̂(∗)
0,n,

K̂
(∗)
0,nWs,n = h̄2

2n
(2s + n)2Ws,n (4.23)

provided the matrix Q(t) satisfies the condition (4.20) (which is invariant with respect to the
transformation Q0 → �(t)Q0�̃(t) for any symplectic matrix �). In the one-mode case
the function (4.22) coincides with (4.15); moreover, in this case the matrix �̃−1

∗ Q�−1
∗ Q is

always proportional to the 2 × 2 unit matrix. If condition (4.20) is not fulfilled, then function
(4.22) still satisfies the Liouville evolution equation (3.6) (as well as any other function of
the classical integral of motion rQ−1r), but it is not an eigenstate of the quantum integral of
motion K̂

(∗)
0,n.

Due to condition (4.20), function (4.22) is also an eigenfunction for all operators K̂
(∗)
2m,n

with the eigenvalues

κ(m)
s,n = 2n

[
h̄

2n
(2s + n)

]2+2m

. (4.24)

It would be interesting to find other families of universal invariant solutions in then-dimensional
case (one may suppose that the most general solution must depend on n parameters, in
accordance with the existence of n independent integrals of motion) and to obtain an explicit
expression for the counterpart of the solution (4.22) in the coordinate representation. We leave
these problems for future studies.
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4.3. Invariants containing higher-order moments

It is almost evident (and can be easily proved for Hamiltonian systems, i.e. in the absence
of irreversible processes [19, 58]) that any function of integrals of motion is another integral
of motion. Thus, taking powers of operators K̂2m(t) or F̂2m(t), we arrive at non-quadratic
integrals of motion

[
K̂2m(t)

]j
and

[
F̂2m(t)

]j
, whose average values, also being universal

invariants, are expressed in terms of the moments of the order 2j (and the second-order
variances):

K(j)

2m = 〈(
R̂�̃−1Q(t)

[
�−1Q(t)

]2m
�−1R̂

)j 〉
(4.25)

F (j)

2m = 〈(
R̂
[
Q−1(t)�

]1+2m
�−1R̂

)j 〉
. (4.26)

In particular, in the one-dimensional case,

F (2)
0 = %−2

[
σppppσ

2
xx + σxxxxσ

2
pp + 6σppxxσ

2
px − 4σpppxσxxσxp − 4σxxxpσppσxp

]
+%−1

〈
(δp̂)2(δx̂)2 + (δx̂)2(δp̂)2

〉
(4.27)

where the symbol σab...c denotes the average value of the sum of all possible different products
of operators δâ, δb̂, . . . , δĉ (where δâ ≡ â −〈â〉), divided by the number of terms in this sum.
For example,

σppxx = 1
6

〈
(δp̂)2(δx̂)2 + (δx̂)2(δp̂)2 + δp̂δx̂δp̂δx̂ + δx̂δp̂δx̂δp̂ + δp̂(δx̂)2δp̂ + δx̂(δp̂)2δx̂

〉
.

Such mean values can be written in the simplest form through the Wigner function:

σab...c =
∫

dp dq

2πh̄
W(p, q)δaδb . . . δc a, b = p or x.

A special case of the invariant (4.27) was considered (for optical paraxial beams) in [36],
where the inequality F (2)

0 > 4 was established. Similar invariants containing the moments
of arbitrary degrees were studied in the context of the classical beam propagation problem in
[27], and for optical beams in [35]; the key point was the use of tensors constructed from the
higher-order moments, generalizing the second-order moment matrix Q.

4.4. Remark on the average values

We have defined the moments in equation (2.5) having in mind the most usual situation, when
the operators Q̂α are Hermitian and their product must be symmetrized in order to obtain real
average values. However, formula (2.4) and all its consequences discussed above remain valid
under the definition Qαβ = 〈Q̂αQ̂β〉 − 〈Q̂α〉〈Q̂β〉. Moreover, besides the standard definition
of the mean value as 〈Q̂〉 = 〈ψ |Q̂|ψ〉, one may also use quantities such as the transition
amplitude 〈ϕ(t)|Q̂|ψ(t)〉, where |ϕ(t)〉 is an arbitrary ‘reference’ state.

Our constructions remain valid for the mixed quantum states, described in terms of the
statistical operator ρ̂ (or the mutual coherence function in the optical case). Also, besides
the standard definition 〈q̂αq̂β〉 = Tr

(
ρ̂q̂αq̂β

)
, one may use more sophisticated ones, for

example, [24, 59] 〈〈q̂αq̂β〉〉 = µ−1 Tr
(
ρ̂2q̂αq̂β

)
or [23, 24] 〈〈〈qαqβ〉〉〉 = µ−1 Tr

(
ρ̂q̂αρ̂q̂β

)
, where

µ ≡ Tr ρ̂2 is the quantum mechanical ‘purity’.

5. Arbitrary Lie algebras

The existence of universal invariants as discussed above is the consequence of three factors:
the linearity of the Heisenberg equations of motion, the symplectic identity (2.7) and the
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unimodular identity (2.8). Linear equations of motion also arise for the Hamiltonians of the
form

Ĥ =
∑
ν

f ν(t) ẑν (5.1)

provided operators ẑν are generators of an arbitrary Lie algebra:

[
ẑα, ẑβ

] = ih̄
N∑

ν=1

cναβ ẑν cναβ = −cνβα (5.2)

ẑα(t) =
N∑

β=1

�αβ(t) ẑβ(0) (5.3)

�̇αβ =
N∑

ν,δ=1

cδανf
ν(t)�δβ. (5.4)

Using the Liouville formula (2.9) and equation (5.4) one can verify that the necessary and
sufficient condition of the unimodularity of matrix �(t) for arbitrary coefficients f ν(t) is the
validity of the set of equations

N∑
α=1

cααβ = 0 β = 1, 2, . . . , N. (5.5)

Instead of (2.7) we now have the identity

�(t)g�̃(t) = g � = ∥∥�αβ

∥∥ g = ∥∥gαβ∥∥ (5.6)

where gαβ are the elements of the Killing–Cartan tensor,

gαβ = gβα =
∑
δρ

c
ρ
αδc

δ
βρ. (5.7)

To prove (5.6) we introduce the matrix X = �g�̃ − g. Due to (5.4) it satisfies the equation

Ẋ = AX + XÃ + Ag + gÃ (5.8)

where the elements of matrix A = ‖Aαβ‖ are given by Aαβ = ∑
ν c

β
ανf

ν . However,
Ag+gÃ ≡ 0, since the coefficients cανβ = ∑

δ

(
cδανgδβ

)
are antisymmetrical with respect to all

three indices [60]. Consequently, the unique solution to the homogeneous equation (5.8) with
zero initial condition is X ≡ 0. Note that the matrix �(t) is unimodular for any semisimple
algebra. Such algebras possess non-degenerate Killing–Cartan tensors [60], so the identity
det �(t) ≡ 1 is the immediate consequence of the identity (5.6).

Let us introduce the notation

zα = 〈
ẑα
〉

zαβ = 1
2

〈
ẑαẑβ + ẑβ ẑα

〉 − zαzβ ≡ z′
αβ − z′′

αβ.

Introducing the matrix Z = ∥∥zαβ∥∥, one can easily verify that universal invariants are given by
the coefficients of the expansion

G(γ ; t) = det
[
Z(t) − γg

] =
N∑

m=0

γ mGm = G(γ ; 0). (5.9)

Using the quantities z′
αβ or z′′

αβ instead of zαβ in (5.9), one obtains similar expressions G ′
m

and G ′′
m, which are also universal invariants. Since both matrices, Z and g, are symmetrical,
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all coefficients in the expansion (5.9) are different from zero, so the number of independent
invariants equals the number of algebra generators N . The equivalent set of ‘trace’ invariants
can be written as (provided det g �= 0)

Lm = Tr
( [

Z(t)g−1
]m )

g−1 = ∥∥gαβ
∥∥. (5.10)

These invariants are average values of the universal integrals of motion

Ĵn = (
ẑ − 〈ẑ〉) (g−1Z

)n
g−1

(
ẑ − 〈ẑ〉) Lm = 〈Ĵm−1〉 (5.11)

where ẑ ≡ (ẑ1, ẑ2, . . . , ẑN ). The exponent nmay be an arbitrary integer (positive and negative,
even and odd). However, only N integrals of motion are independent (for example, those given
by equation (5.11) with n = 1, 2, . . . , N). The simplest invariant coincides (up to a constant
factor) with the mean value of the Casimir operator

G ′
N−1 ∼ L′

1 = Tr
(
Z′g−1

) = 〈
ẑαẑβg

αβ
〉
. (5.12)

Another simple invariant is G0 ∼ det [Z(t)]. It does not depend on the structure constants of
the algebra.

5.1. Example

Consider the set of operators

R̂1 = p̂2
[
R̂1, R̂2

] = −4ih̄R̂3

R̂2 = x̂2
[
R̂2, R̂3

] = 2ih̄R̂2

R̂3 = 1
2

(
p̂x̂ + x̂p̂

) [
R̂3, R̂1

] = 2ih̄R̂1

(5.13)

which form the algebra isomorhic to sl(2, R) ∼ su(1, 1) ∼ so(1, 2). These algebras are
frequently used in quantum optics. The only non-zero coefficients of the Killing–Cartan
tensor are g12 = g21 = −2g33. Since det g �= 0, we have three invariants which depend on the
fourth-order moments of the coordinate and momentum operators,

G0 = R11R22R33 + 2R12R23R31 − R11R
2
23 − R22R

2
31 − R33R

2
12 (5.14)

G1 = R11R22 − R2
12 + 4 (R12R33 − R13R23) (5.15)

G2 = R12 − R33 (5.16)

as well as the related invariants G ′
m and G ′′

m. In particular, G ′′
2 is the generalization of the

invariant %′ (2.13) for homogeneous one-dimensional quadratic Hamiltonians:

G ′′
2 = R1R2 − R2

3 = 〈p̂2〉〈x̂2〉 − 1
4 〈p̂x̂ + x̂p̂〉2. (5.17)

The invariant G ′
1 reads

G ′
1 = 〈p̂4〉〈x̂4〉 + 3

4

(〈p̂2x̂2 + x̂2p̂2〉)2 − 3
2 h̄

2〈p̂2x̂2 + x̂2p̂2〉 − 〈p̂3x̂ + x̂p̂3〉〈p̂x̂3 + x̂3p̂〉.

Other examples can be found in [22, 24, 61].
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6. Discussion

There are several areas in classical physics, where the dynamics is governed by an effective
Schrödinger equation with oscillator-like potential, so that the transformation relating ‘initial’
and ‘final’ sets of variables describing the state of the system possesses a symplectic structure,
which is a necessary prerequisite for the existence of universal invariants. In particular, such
a situation takes place for paraxial optical beams.

Consider, for instance, the Helmholtz equation ∇2E + k2n2(r)E = 0, which describes
the propagation of harmonic wave fields (here k is the wavenumber and n(r) is the refractive
index of the medium). Making the substitution

E(r) = n
−1/2
0 ψ(x, y; z) exp

(
ik

∫ z

n0(ξ) dξ

)
(6.1)

and neglecting the second derivatives of ψ with respect to the longitudinal coordinate z, as
well as the derivatives of the function n0(z), one arrives at the equation [62, 63]

iλ̃
∂ψ

∂z
= − λ̃2

2n0

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+

1

2n0

[
n2

0(z) − n2(x, y, z)
]
ψ (6.2)

where λ̃ = λ/2π = k−1 is the reduced wavelength in vacuum and n0 ≡ n(0, 0, z) is
the refractive index of the medium on the axis of the beam propagating in the z-direction.
Obviously, the parabolic equation (6.2) can be considered as an effective Schrödinger
equation, provided one identifies λ̃ with the ‘effective Planck constant’ and the longitudinal
coordinate z with ‘time’. The ‘momentum’ operator in this case reads as p̂ = −iλ̃∂/∂x.
Consequently, the universal invariants exist for paraxial beams propagating in the media
with a quadratic dependence of the dielectric permittivity n2 on the transverse coordinates:
n2 − n2

0 = aik(z)xixk + bi(z)xi , where the coefficients aik and bi may be rather arbitrary
real functions of the longitudinal coordinate z (provided (λ̃/n2

0)|dn0/dz| � 1, which is the
necessary condition of validity of the parabolic approximation). For the first time the existence
of such invariants and their general structure (including higher-order moments) for paraxial
optical beams of an arbitrary shape was established in [23]. The simplest examples related
to a particular case of Gaussian beams were considered in [64, 65]. For such beams, the
conservation of the invariant % (2.13) means that the ratio of the correlation radius to the width
of the beam remains constant. This result was obtained for the Gaussian beams propagating in
the free space in [66], for discrete linear optical systems in [64], and in the most general case
in [23]. In the optical literature, the invariant % is sometimes called the ‘beam quality factor’
[30, 31] (more frequently, this name is used for the ‘uncertainty product’ M2 = σppσxx taken
at the waist cross section of the beam [67]). The influence of the non-parabolic refraction index
profile on the conservation of the invariants was studied in [23]. The idea of using universal
invariants for the classification of nonlinearities was formulated in [27, 68].

Making the substitution (6.1) in the wave equation (n2/c2)∂2E/∂t2 − ∇2E = 0 and
neglecting the same terms as in the case of the Helmholtz equation, we obtain another parabolic
equation [69]

iλ̃
∂ψ

∂z
= λ̃2

2n

(
n2

0

c2

∂2ψ

∂t2
− ∂2ψ

∂x2
− ∂2ψ

∂y2

)
+
n

2
ψ. (6.3)

It can be considered as the Schrödinger equation with a quadratic Hamiltonian, if the refraction
index n = n0 does not depend on the transverse coordinates x, y and time t , although an
arbitrary (not too fast) dependence n0(z) is permitted. Note that the effective Hamiltonian is
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not non-negatively definite in this case; nonetheless, this fact is unimportant for the existence
of the universal invariants, which include moments like

t2 =
∫

ψ∗(x, y, t)t2ψ(x, y, t) dx dy dt

or

p2
t = −λ̃2

∫
ψ∗(x, y, t)

∂2

∂t2
ψ(x, y, t) dx dy dt.

Here we assume that the beam has a finite extension not only in space, but in time, as well.
Explicit expressions for the ‘spacetime’ optical invariants were given in [69] and recently in
[70].

Parabolic equations such as (6.2) were applied to describe the transverse (classical) motion
in accelerator beams [71–74]. In this case the ‘effective Planck constant’ is proportional to the
emittance, i.e. the phase space volume of the beam. Another example is the Fock–Schwinger
proper-time representation of the relativistic Klein–Gordon or Dirac equations for a quantum
charged particle in external electromagnetic fields [18, 75]. In all of these cases one can
construct universal invariants similar to those given in the preceding sections.

The universal invariants are intimately related to the generalizations of the uncertainty
relations [19, 22, 49]. Moreover, they can be extended to the case of more general commutation
relations than (2.1): there exist constructions based on the anticommutators (fermionic
operators) [22], or even on some mixtures of the commutators and anticommutators (Fermi–
Bose systems) [19]. It would be interesting to try to generalize these constructions to the case
of parastatistics or to the case of q-deformed commutation relations. Besides, it would be
interesting to find the new invariants considering the Schrödinger-like dynamic equations for
the quantum quasiprobabilities different from the Wigner function, such as the Cahill–Glauber
distributions [76], the ‘ambiguity function’ [77] or the ‘extended Wigner function’ [78].

An intriguing problem is related to the Schrödinger-like equations with non-Hermitian
effective quadratic Hamiltonians. Such Hamiltonians arise naturally, for example, if one adds
to the right-hand side of equation (3.6) terms with second derivatives, transforming it into the
Fokker–Planck equation, which can be used for a phenomenological description of relaxation
in quantum systems [79]. Another example is the parabolic equation for the mutual coherence
function of a beam propagating through a stochastic (turbulent) medium [80]. There is no
problem in constructing the generalizations of the ‘dynamical’ invariants (which depend on
the concrete form of the Hamiltonian) to the non-Hermitian case [58]. However, the direct
generalization of the universal invariants appeared impossible due to the non-conservation of
the standard normalization

∫
ψ∗ψ dx [24]. Perhaps, ‘non-standard’ definitions of the average

values and normalizations, like those discussed at the end of section 3, could help to solve this
problem.
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